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Abstract

We study a system containing many particles of identical kinematics with a zero
range interaction that scatters one from the other, and with the possible exchange
of an attribute. Taking an initial condition in which the attribute is asymmetrically
distributed in the regions of momentum space occupied by the particles, we study
the rate at which it becomes uniformly distributed, through collisions. We �nd, in
some circumstances, a rate that is much faster than that which would be estimated
from cross-sections. This behavior is attributable in some general sense to N-particle
entanglement. We suggest applications to neutrino physics, where the attribute is
neutrino avor.

FERMILAB-Pub-03/062-A

1 Introduction

We consider a system consisting of stable or quite long-lived particles (i.e.
stable for the time range that in which we shall be interested), con�ned in
a box for simplicity, and interacting occasionally with one another. Taking
an initial state which is, at least with respect to some of its attributes, not
in statistical equilibrium, we can discuss time scales for evolution of the gross
features of the system. In general these scales are determined by cross-sections.
But an exception to this assertion about scales and cross-sections can be found,
among other places, in the transformation of one state of a particle into another
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through evolution that can occur in isolation from other particles, such as in
neutrino oscillations or the precession of spins in external magnetic �elds. In
this case it may not be to the point to discuss the instantaneous\rates" at
which the system changes, since we are watching coherent development of an
attribute of the system with time behavior generically like sin!t.

In the present note we demonstrate some circumstances under which we do
not have such slow single-particle \precessions" but in which there is a long
term coherent process arising from the short range interactions of particles,
which can be randomly distributed in momentum space. This behavior can
arise when the particles have another attribute that can be traded in the
course of an interaction. Both to have a concrete framework and with a view
to a possible application, we shall consider a system of neutrinos. In order
to eliminate extraneous e�ects, we consider an example in which there are
two avors of massless neutrinos, designated �e and �� , and there is no neu-
trino avor mixing in the Hamiltonian. There is an initial distribution of the
neutrinos speci�ed, one in which there is some systematic avor asymmetry,
such as neutrinos of one avor being predominantly of higher energy than
those of the other avor, or with di�erent angular distributions for the two
species. The question we pose is: \At what later time would the distributions
would become more or less equal through neutral current interactions?" The
conventional answer, as mentioned above, is that this time is determined by
a scattering rate proportional to the weak cross-section times the density of
scatterers. Equations in the literature do indeed predict shorter time scales for
e�ects arising from neutrino-neutrino interactions in the case in which there
is avor oscillation built into the Hamiltonian [1]. The e�ects studied in these
papers are analogous to the \forward scattering", or \index of refraction"
terms familiar in the study of the passage of neutrinos through matter that
contains electrons, in that they have an inverse time scale that is proportional
to GF � where � is the neutrino number-density of the medium and GF is the
Fermi constant. This is in contrast to cross-section e�ects, which are of or-
der G2

F �!
2, where ! is the energy of the scattering particles. These studies,

however, predict that such e�ects are strictly absent in the absence of avor
mixing in the Hamiltonian, if one one begins, as we do, with a state that is
diagonal in the avor space [2]. The essential di�erence between our approach
and that of previous work is that we retain much of the full complexity of
the multi-body physics involved, rather than assuming we may describe our
ensemble of particles with a single body density matrix. 1

1 Some of the subtleties involved in neutrino-neutrino forward scattering have re-
cently been re-examined by A. Friedland and C. Lunardini [3]. In particular, they
raise the point that there may be circumstances in which a single body description
is inadequate, as is certainly the case for the e�ects we study here. However, we
do not see how to obtain the results of the present paper using the perturbative
approach of these authors.

2



2 Model

The basic process that we consider is simply

�e(p) + �� (q)! �e(q) + �� (p); (1)

where the momenta p and q are drawn from the initial distributions. These
processes will tend to reduce the correlations of avor and momentum that
we assume are present in the initial state. The question is: \At what rate?"
The part of the Hamiltonian that will provide our e�ects operates only in the
subspace of the initial momentum states. We de�ne annihilation operators ai
for a �e of momentum pi and bi for a �� of momentum pi, where i runs from
unity to the number of single particle momenta. 2 Given an initial state of
N1 momenta occupied by �e and N2 momenta occupied by �� , we take the
e�ective Hamiltonian that implements the full set of reactions in Eq. (1) to
be,

H
(eff)
I =

1

2

p
2GF

V

N1+N2X
i6=j

fij [a
y
jaib

y
ibj + ayiajb

y
jbi] (2)

where V is the volume of the system and the weight function fij is of order
unity. The sum extends over all of the (N1 + N2) momentum states of the
system that are initially occupied by either avor of neutrino. We have omit-
ted the i = j terms in the Hamiltonian since the corresponding processes,
�e(pi) + �� (pj) ! �e(pi) + �� (pj), do not contribute to our e�ects. Including
such terms, that is to say, a diagonal contribution to the Hamiltonian, al-
ters the wavefunction of the system only by an irrelevant overall phase. Since
the energies of the basic set of unperturbed states are exactly the same, the
time evolution of the system will be entirely determined by this interaction
Hamiltonian.

In a realistic problem the form of fij will depend on the circumstances of
the application. For example, if we had started with the complete form of
the neutral current, neutrino-neutrino interactions, then the matrix elements
of the Dirac matrices in the V,A structure dictate a factor of [1� cos(�pi;pj)],
where the angle is that between the two momentumvectors labeling the states.
For simplicity, we have taken fij = 1 8i; j for some of our analytic estimates.
In the numerical calculations we have taken a distribution of values in the

2 Not necessarily equal to the number of particles, since in the initial state a �e and
a �� could both have the same momentum.
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range 0:5� 1, given by

fij = 0:5 +
0:5

N1 +N2
ji� jj : (3)

3 N+N

In our �rst example we shall take a set of 2N momentum states to be occupied
half by �e's and half by �� 's. For the initial state we take the �rst (bottom) N
states to be �lled by �� 's and the last (top) N states to be �lled by �e's. We
refer to this state as j	0i. Explicitly,

j	0i = j�e(p1) : : : �e(pi) : : : �e(pN )�� (pN+1) : : : ��(pj) : : : ��(p2N )i : (4)

The interactions given in Eq.(1) exchange energy and momentum between
particles of the two di�erent species. An example of such a process is the
interchange of our initial state with

j�e(p1) : : : �� (pi) : : : �e(pN )��(pN+1) : : : �e(pj) : : : �� (p2N )i : (5)

The total set of states of the complete system that we have to deal with, j	�i,
are the ns = (2N)!=(N !)2 distinct states in which the avor indices in the
initial state are permuted within the de�ned subset indexed by pi. We shall
adopt an ordering of these states such that in each of the �rst ns=2 states in
the list, the top state in the single particle list is occupied by �e. Having taken
all of the N of the �e's on the top, in the initial state, we wish to estimate the
time for \equilibration", in the sense of the �e 's being more or less distributed
with 50% in the bottom set of states.

In the ns dimensional space spanned by our basis states, j	�i, the e�ective
Hamiltonian matrix as determined from Eq.(2) has N2 o�-diagonal elements
in each row (or column); we denote this matrix by M . Each of the nsN

2

o�-diagonal elements of M is one of the 2N(2N-1)/2 values of the function fij
of Eq. (2).

Taking fij = 1, we have,

h	�jM2j	�i = 2N2G2
F

V 2
(6)

for each one of the basis states j	�i. The square root of the average squared
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energy of the ns eigenstates is thus given by

Eav =
h
n�1s Tr[M2]

i1=2
=

1

2

p
2GF � (7)

where the trace operates in our space of ns states, and we have substituted
the total (�e+ ��) number-density, �, for 2N=V . We denote the corresponding
set of eigenstates of M by j	Ei, where the E's stand for the ns eigenvalues.
The state of the system at time T , which we denote by j	(T )i is given by

j	(T )i =
nsX
E

j	Eih	E j	0ie�iET ; (8)

From this we can compute, for example, the probability P (persistence) that
a particular one of the top ns=2 states, which was occupied at time T=0 by a
�e, is occupied at time T by a �� . For example, with the j	0i and the ordering
of the ns states as described above, we ask for the probability of continuing
to have a �e in the very top state, obtaining

P =
ns=2X
�=1

jh	�j	(T )ij2; (9)

where the sum is over all the ns=2 states that have a �e on top.

Of course at the moment we have said nothing about the coeÆcients h	�j	Ei
that enter in Eq. (9) and Eq. (8). We anticipate that an eigenvector of a matrix
such as M typically projects signi�cantly onto many of the basis states j	�i.
Our numerical tests sustain this conclusion, which we will not quantify further
in this note. Then the time in which P becomes signi�cantly less than unity
on the average, i.e. the mixing time, is determined by the magnitude of a
typical eigenvalue. From Eq. (7) we already found that the root mean square
of an eigenvalue is of order �GF . If a macroscopic fraction of the eigenvalues,
that is, a number �ns of them, are of this order, 3 then the e�ective mixing
time should be of order (�GF )�1, in view of the relations Eq.(8) and Eq.(9).
This is the same as the typical time scale for what the \index of refraction" or
\forward-scattering" e�ects would be in the case of in which we replaced the
neutrino density by an electron density of the same magnitude, a time scale
much shorter than any e�ect of nonforward scatterings (which scale as G�2

F .)

The distribution of the eigenvalues can be determined analytically in the case
in which fij = 1. Consider a system in which the number of �e and �� is given

3 Of course, if essentially all of the strength were concentrated in a number of
eigenvalues which did not grow as ns, then we would not obtain macroscopic e�ects.
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by N1 and N2 respectively. We shall assume, without loss of generality, that
N1 � N2. The distribution of eigenvalues have a pattern, from which we can
observe that there are N1 + 1 distinct eigenvalues

Ei =

p
2GF

V
[(N1 � i)(N2 � i)� i]; i = 0; 1 : : : N1; (10)

with degeneracies given by

Di =
(N1 +N2)!

i!(N1 +N2 � i)!
� (N1 +N2)!

(i� 1)!(N1 +N2 � (i� 1))!
: (11)

In Fig. 1 we plot the distribution of these eigenvalues for the present case of
N each of �e and �� , in the limit of large N. On the same �gure we show the
distributions obtained numerically, in the case that fij is given by Eq. (3), for
the cases 2N = 12 and 2N = 14. Since the matrix M is traceless, the eigen-
values sum to zero. One can see from Fig. (1) that the bulk of the eigenvalues
(say, > 95%) lie in the range

� 1

2
� Ei

2N

Vp
2GF

� +1; (12)

and thus the typical energy di�erence between a pair of eigenstates will be of
order (

p
2GF =V )(2N) � p

2GF �. The qualitative features of the eigenvalue
distribution, are not a�ected by taking a distribution of fij's.

0 0.2 0.4 0.6 0.8 1
states

-0.5

0

0.5

1

1.5

E

Fig. 1. The distribution of energy eigenvalues for a system of N �e's and N �� 's,
where the energy is in units of

p
2GF�. A point on the curve represents the fraction

of states with energy below E. The heavy curve is the limiting result for large 2N
for the case fij = 1. The heavier and lighter dashed curves are the results for 2N=14
and 2N=12 respectively, with fij given by Eq. (3), but multiplied by a factor of 4/3
so that the average coupling strengths in the comparisons are the same.

We also make a limited computational check on our heuristic estimates of
the e�ects on rates, by directly solving the Schrodinger equation, beginning
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with the above initial state, Eq. (4), and determining the probability that a
particular one of the �e's in one of the upper states has been replaced at a
later time by a �� . In the case 2N = 14 we have to solve ns = 14!=(7!)2 = 3432
coupled linear di�erential equations, which is our computational limit. The
results of these calculations are shown in Fig. 2 for a case in which the coupling
function fij is given by Eq. (3). We see that the curves show very similar
behavior, and except for the smallest case with 6 particles, the times elapsed
to the �rst minimumare very close to each other. The results appear to sustain
the analysis, given above, for a mixing rate that is independent of particle
number for �xed density. Note, however, that the locations for, say the �rst
peaks in the respective curves move to greater time as N is increased, albeit
at a slower and slower rate. One cannot absolutely conclude from these data
that there is a limiting point for large N and �xed density. Provisionally,
taking the mixing time to be that in which the curves cross in Fig. 2, we
�nd Tmix � (

p
2GF �)�1 in the limit of an in�nite system. Unfortunately, a

perturbation theoretic approach is valid only for small times (smaller and
smaller times as the particle number is increased) and cannot shed any light
on the outcome.

0 5 10 15 20 25 30 35
T

0.2

0.4

0.6

0.8

1

P

Fig. 2. The mixing parameter, or single level persistence probability, P , as de�ned
in text, as a function of time, for a system of N �e and N �� . The curves correspond
to the number of particles: 2N=6, 8, 10, 12 14, where the heaviest curves are for
highest N. The unit of time is (

p
2GF �)�1.

4 1+(2N-1)

Next we look at a problem that is so closely related to the above one that
one might (erroneously) guess that the behavior is similar. We start with
the same Hamiltonian Eq. (2), and set of 2N participating states but now
take an initial condition with only the top state �lled with a �e and all the
remaining (2N�1) single-particle states �lled with �� 's. The e�ective subspace
of system states that are connected together is now ns = 2N dimensional, and
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is described by the location of the single �e. But now, in the analogue of
Eq. (6), for the case of fij = 1 we �nd that the average squared eigenvalue is
(2N)�1TrM2 = (2N�1)(

p
2GF =V )2, in contrast to the value, N2, obtained in

the (N;N) case. Furthermore, there is a single state, with eigenvalue (2N�1),
while the remaining (2N�1) states all have eigenvalue �1. Denoting the state
with large eigenvalue by 	S , we note that jh	S j	0ij2 = N�1 so that the e�ects
on P of mixing with this state are of order N�1; and since there are no energy
di�erences among the remainingN�1 eigenstates, the total e�ect (at the order
GF level) will vanish in the limit of large N. We have con�rmed numerically
that the introduction of a scatter into the coupling constants, using Eq. (3),
does not change these conclusions qualitatively. The results for persistence
versus time in this case are shown in Fig. 3, for the case of several values of
N . They clearly show the N�1 behavior in the short and intermediate time
regions.

0 20 40 60 80 100
T

0.6

0.7

0.8

0.9

1

P

Fig. 3. The same as Fig.2 except for the case of an initial system state with only
one particle state occupied by a �e and the others occupied by �� 's, with P the
probability that this the �e is in its initial state. We compare the cases 2N=30, 60,
120, 240 where the slower evolution corresponds to the higher number of particles.

5 Discussion

Thus far in our discussion, we have used \�e" and \��" merely to label our
states, and we have given no hint as to how the above behaviors could make a
di�erence to observable results in the neutrino world. In fact there are two sit-
uations that have been discussed in the literature in which neutrino-neutrino
scattering is thought to play a role, and in which the size of the parameters
is exactly such as to make e�ects with our time scale (

p
2GF �)�1 of possible

importance, and indeed as important as the e�ects noted in the literature. The
�rst is in early universe scenarios in which one has assumed some degree of
neutrino degeneracy [4]. The second is in the region just above the neutrino-
sphere in the supernova process, where di�erences in the energy spectra for
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di�erent neutrino avors play a key role in whether or not there is an eÆcient
R process for nucleosynthesis [5]. Another example where neutrino-neutrino
forward scattering is relevant, is the avor conversion of high energy neutrinos
from astrophysical sources as they propagate through the relic neutrino back-
ground [6]. We emphasize again that up to this point we have not included the
neutrino oscillation physics that drives the results in these works. We intend
to address the combination of the two themes in a subsequent publication. But
we can comment on what we believe to be the insuÆciency of the previous
works on the subject. What we have computed above, the probability that a
speci�c state, say pi, that was originally occupied by a �e (in the initial state
for the complete system j	0i) is still occupied by a �e at time t, has a simple
expression in terms of the Heisenberg picture operator, ai(t),

P = h	0jayi (t)ai(t)j	0i; (13)

where the Heisenberg operators are chosen to coincide with the Schrodinger
operators that were introduced in Eq. (2) at t = 0. Now the operator in
Eq. (13) is a neutrino density operator for the particular state pi. If we write
an equation of motion for this operator, by taking the commutator with the
Hamiltonian Eq. (2), the right hand side is a quartic in the operators ay; a; by; b,
and there is a sum over one index j. When we encounter, say, a term like

X
j

ayj(t)bj(t)b
y
i(t)ai(t) (14)

we would like to be able to replace
P

j(a
y
jbj) by a density matrix element,

o�-diagonal in the avor space, which represents the entire average state of
the medium. Then the multiplying operator byiai would be a corresponding
operator but for the single mode i. Indeed, this is exactly the assumption that
yields the non-linear terms in the equations for the density matrices derived
in Ref. [2] and used in Ref. [4,5].

As noted above, with our assumed avor-diagonal initial conditions, and in
the absence of neutrino-mixing in the Hamiltonian, such terms do not create
any e�ect. Our e�ects are exactly due to the fact that the replacement of
the four-operator product by a product of two expectation values, as sketched
above, is not justi�ed. Even if we were to assume that a kind of factorized
ansatz would pick up the leading terms, which we believe is highly unlikely,
we would want add the results of pairing, say, ayjai in Eq. (14). That is to
say, we would be driven to consider density matrices that are o�-diagonal in
momentum space, as well as in avor space.

To summarize, we have evidence for a new, macroscopic quantum e�ect that
could change the outcome of calculations in which �-� scattering matters. The
caveats that must be added are:
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(i) Accepting the earlier conclusions for the model de�ned by the Hamiltonian
Eq. (2), we must go back and ask whether we have de�ned the correct problem.
All those modes that we left out, when we truncated our Hamiltonian to
momentum states that were initially occupied by one species or the other,
can they make a di�erence? These additional modes would be populated via
non-forward scattering interactions, which enter the problem at the level of
cross-section (� density), that is, on time scales of order (G2

F�!
2)�1. Our

expectation is that they will not a�ect our results on the much shorter time
scales we consider (of order (GF�)�1.

(ii) Our calculations pertain directly to plane waves in a volume V . Ordinary
neutrino oscillation theory has come under �re repeatedly from authors that
suspect that preparation-of-state considerations bring the idealized, plane-
wave picture into question. These criticisms have been successfully answered
more than once [8] for the case of single-particle oscillation, but they could
surface again in our present context.

At the present time, we are cautious about claiming that our results will
be important to the neutrino physics either in the early universe or in the
supernova. These are, however, the two most obvious applications in which
the neutrino number density is high enough for neutrino-neutrino scattering
to be important. We further note that the avor-energy correlation is critical
to understanding the physics just outside the supernova neutrinosphere. Of
course, we would need to include neutrino mass and mixing in the model
in order to address a realistic situation. Super�cially, we can note that the
energies attributable to mass e�ects are small compared to the inverse time
associated with our processes under the conditions that prevail just outside the
neutrinosphere of a supernova. But more analysis is required before reaching
a conclusion in that context. A negative feature of our work is that in contrast
to being able to use the quite simple equations for the density matrix posited
by Ref. [2], we appear to be doomed to treating the full complexity of the
many-body physics that arises in these systems.

6 An example with a �nite number of discrete states

We demystify the physics of much of the above, to some degree, by thinking of
a fairly large but �nite set of discrete quantum subsystems with interactions
of comparable strength between each pair. In addition to being an interesting
exercise this also is relevant to applications in other arenas than the world of
neutrinos. We consider a set of N spins associated with one set of �xed site
labels, say red, and another set of N spins associated with a second set of
labels, say blue. The interaction exchanges all pairs of spins with comparable
strength, or order g, for each pair. Let us now start with all reds up and all
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blues down, and consider the short time evolution of this state. The probability
that the spin on a particular red site becomes down in a very short time t is
of order h = g2Nt2. We might think that this perturbation calculation stays
more or less valid until such a time that h is, say, 0:1. But if we go back
through the same mechanics that we used for our continuum problem, we see
that is not be the case; the system will mix in a time T such that gNT = 1 4 ,
at which time the above perturbative estimate of the amount of mixing is only
h = 1=N .

Next consider the case in which the �rst red spin is up, and every other red
and blue spin is down. In complete correspondence with the (1, 2N-1) neutrino
case, we �nd that the above perturbative estimate of the mixing time, for the
�rst red spin to become appreciably blue, is correct. The mixing time for this
single state is longer than that of the �rst example by a factor of N , for large
N .

What makes these cases so di�erent from each other? In both cases the spin
at the �rst red site interacts with each of the N blue spins. But in the second
example, the blue spins themselves interact only with that one red site, at
the turn-on time, while in the �rst example every blue spin is being a�ected
by every red spin from the beginning. The di�erence lies not in the number
of interactions that the red spin sees, but in the entanglements of the states
that it interacts with. Since in the �rst case we get faster evolution than we
would have expected from the perturbation estimate we classify the e�ect as
a \speed-up". And the reason is clearly the multiparticle entanglement within
the system. For completeness, we should note that even in the second example,
the blue sites, with which the spin on the distinguished red site interacts, do
develop mutual entanglement, but with a much slower initial rate than in the
�rst example. In e�ect, they see each other only through their mutual coupling
to the distinguished red site.

7 Conclusion

We have examined a \speed-up" of evolution through entanglement, both in
a discrete system of spins and in a neutrino model with a continuum of states.
Though the practical meaning of \speed-up" is slightly di�erent in the two
cases, the formal source of the e�ect is the same.

The reader might ask the question: \Are the authors using the word `entan-

4 Note that in this case we do not rede�ne the coupling constant with increasing
N; there is no volume or density involved in the models. Thus the eigenvalues grow
as N.
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glement' in some precise mathematical sense, or are they just using it to say
the system gets complicated?" We contend that it is the former, in the sense
that the state of the system cannot, in general, be factorized into a product
of single particle states. Note, however, that the quanti�cation of multipar-
ticle entanglement is not a concept that that has been precisely de�ned in
the literature. De�nitions of two-state entanglement, however, have received
much attention. The reader can consult Ref. [7] for a demonstration of how
in the simplest relevant ordinary Schrodinger example, with two particles in
a double well, entanglement in a precise mathematical sense is spontaneously
generated if the two particles interact with each other.

Returning to the neutrino example, the �rst order e�ects that mixed the states
had an inverse time-scale

p
2GF �; this is the \speeded-up" rate. The usual

inverse time-scale for (non-forward) scattering e�ects is of order G2
F �!

2 where
! is of the order of the particle energies and much, much slower, than the
\speeded-up" rate when ! is of order an MeV. Comparing again with the
calculation with only one �e in a sea of �� 's, where there is no speed-up, the
di�erence is attributable to the degree of entanglement.

The inclusion of entanglement requires abandoning the single-particle descrip-
tion of the system, to include the full complexity of the many-body physics
involved. Single-body descriptions do predict signi�cant neutrino-neutrino for-
ward scattering e�ects [1,2], which, however, are absent for the avor diagonal
initial states we consider here. The results of our many-body calculation may
thus have interesting consequences in situations where �-� scattering is im-
portant.
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